Conformal fields and the stability of leaves with constant higher order mean curvature
نویسندگان
چکیده
منابع مشابه
Conformal Structures and Necksizes of Embedded Constant Mean Curvature Surfaces
Let M = Mg,k denote the space of properly (Alexandrov) embedded constant mean curvature (CMC) surfaces of genus g with k (labeled) ends, modulo rigid motions, endowed with the real analytic structure described in [15]. Let P = Pg,k = Rg,k × R+ be the space of parabolic structures over Riemann surfaces of genus g with k (marked) punctures, the real analytic structure coming from the 3g− 3+ k loc...
متن کاملStability and Bifurcation for Surfaces with Constant Mean Curvature
We give criteria for the existence of smooth bifurcation branches of fixed boundary CMC surfaces in R, and we discuss stability/instability issues for the surfaces in bifurcating branches. To illustrate the theory, we discuss an explicit example obtained from a bifurcating branch of fixed boundary unduloids inR.
متن کاملStability of Hypersurfaces with Constant R-th Anisotropic Mean Curvature
Given a positive function F on S which satisfies a convexity condition, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R n+1 which is a generalization of the usual r-th mean curvature function. Let X : M → R be an n-dimensional closed hypersurface with H r+1 =constant, for some r with 0 ≤ r ≤ n− 1, which is a critical point for a variational problem. We show tha...
متن کاملSpacelike hypersurfaces in de Sitter space with constant higher-order mean curvature
ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2011
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2011.08.001